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Oxygen Vacancy Distribution in 6HBaFeOB-, (0.20 I y I 0.35) 
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An electron diffraction and microscopy study in the BaFe03-, (0.20 5 y 5 0.35) system has been 
performed. For 0.25 5 y 5 y 0.35 values, a phase of average composition BaFeO,.,, intergrows, in a 
disordered way, with a cubic phase of composition close to BaFe02.S,,. For 0.20 I y I 0.25 only a 
single 6H-type structure is observed. On the basis of these results and of a previous Mossbauer 
resonance study, several models of vacancy ordering are discussed. 0 1989 Academic PRX. 1~. 

Introduction 

AM03 perovskites are usually described 
as a stacking sequence of A03 layers, M 
cations occupying a fraction of the octahe- 
dral holes. If the packing is cubic, a cubic 
perovskite is obtained, only three layers be- 
ing necessary to describe the unit cell fol- 
lowing a ccc sequence. For a hexagonal 
close packing, the BaNi03 structural type is 
obtained (I), only two layers being neces- 
sary to complete the unit cell (hhh se- 
quence). Between both terms, several 
phases can be described (2, 3). Thus, the 
6H structural type, characteristic of BaTi03 
(4), is formed by a sequence hcchcc of A03 
layers, i.e., two octahedra-sharing faces 
linked by octahedra-sharing corners. 

In the BaFe03-Y system, the 6H-type is, 
as previously reported (5, 6), stable along a 
wide composition range. We have observed 
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that, according to the method of prepara- 
tion, materials between BaFe02,s0 and Ba 
Fe02,65 present this structural type, all their 
powder X-ray diffraction data being similar 
to that of BaTi03. 

We describe in this paper a study of the 
BaFe03-, system by electron diffraction 
and electron microscopy which allows us to 
establish the relationship between the 6H 
structural type and the AM03 cubic 
perovskite. These results and those ob- 
tained by Mossbauer spectroscopy (7) lead 
us to propose several models for describing 
the vacancy accommodation as a function 
of the coordination of Fe atoms. 

Experimental 

Samples were prepared either by solid 
state reaction from BaO;? and cr-FezOs or 
from the decomposition of a solution of bar- 
ium and iron nitrate solution (8). In both 
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cases, the starting materials were heated, 
into open gold crucibles, at 890°C resulting 
in a material with composition BaFe02,56. 
Then, several annealing procedures at 
PO, = 0.2 atm were performed, and the ob- 
tained materials are listed in Table I. 

The chemical composition has been de- 
termined by measuring the iron oxidation 
state with a K2Cr207 solution after dissolv- 
ing the sample in 3N HCl with an excess of 
Mohr’s salt. 

Electron diffraction and microscopy 
have been performed on a JEOL 200 CX 
electron microscope, fitted with a double 
tilting goniometer stage, kindly lent to us by 
the INPG (Saint Martin d’Heres, France). 

sample corresponding to the [OOl],//[ 1771, 
zone axis is shown in Fig. 2 (subindexes h 
and c refer to hexagonal and cubic type unit 
cells, respectively). A sixfold superlattice 
along the [ liTI,* and two threefold superlat- 
tices along the [211],* and [12i],* are seen. 
From these results, the following relation- 
ship between the pseudocubic reciprocal 
subcell and the 6H hexagonal type recipro- 
cal cell can be established: 

a; = 1/3[211];, 

b; = 1/3[12i]:, 

c: = 1/6[1ii]:, 

Results and Discussion 

Figure 1 shows the electron diffraction 
pattern of BaFe02.75 along the [O_lO]h zone M 
axis which is parallel to the [Oil], projec- 
tion of the cubic perovskite sublattice. The As is well known, if [a]; = M[alc*, the 
electron diffraction pattern of the same relationship between both direct cells is ex- 

FIG. 1. Electron diffraction pattern of BaFe02.75 along the [OlO],//[Oli], zone axis 
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FIG. 2. Electron diffraction pattern of BaFeO?.,, corresponding to the [OOl],//[lii], zone axis. 

pressed by [a],, = ([Ml-‘)*[a],, which ac- rocal cells while Fig. 3b shows such a rela- 
cording to Eq. (l), is tion between both direct cells. 

[jh=[; I il[l; 

Figure 4a shows the hexagonal cell struc- 
tural model of the hexagonal cell along 

(2) [llOlh. It can be observed that, following 

From these results a relationship be- TABLE I 

tween both cubic and hexagonal structural OBTAINED MATERIALS INTHE BaFe03-, 

parameters can be obtained: (0.20 -c y < 0.35) SYSTEM 

ah = a, + c,; ah = tia, T(“C) t(h) Fe4+(%) Composition 

&h = 5, - c,; bh = da, (3) 650 48 56 BaFe02.79 

i?,, = 2ii, - 2&c - 2F,; ch = 2tia,. 
680 48 50 BaFe02.75 
700 48 46 BaFeCh 

Figure 3a schematizes the relationship 

between the cubic and the hexagonal recip- 

750 48 
780 48 

38 28 BaFe%, 
BaFeO*., 
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b 

FIG. 3. (a) Schematic representation of the 6H-type reciprocal lattice showing the relative orienta- 
tion with respect to the cubic perovskite reciprocal cell. (b) Schematic representation of both hexago- 
nal and cubic direct cells. 

the c axis, couples of octahedra-sharing 
faces, tilted 180” with respect to the next 
octahedra couple, are separated by a cubic 
layer, i.e., an octahedron-sharing vertex. 
This sequence justifies the sixfold superlat- 
tice along this direction. 

On the other hand, a threefold superlat- 
tice with respect to the cubic subcell-ap- 
pears along both (211),//(100)~ and (121),// 
(OIO),, due to the relative disposition of the 

octahedra, as schematically represented in 
Fig. 4b. 

As we have previously mentioned, pow- 
der X-ray diffraction patterns of materials 
in the BaFe02.s0-BaFe02.65 composition 
range were either similar or identical to that 
shown by BaTi03. Even the electron dif- 
fraction patterns of this stoichiometric 
compound are identical to those observed 
for BaFe02.75 (8.3% of the vacancies). Fig- 
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uted to a cubic sublattice. Both samples 
have been annealed following an identical 
path (8), suggesting that the differences ob- 
served can be related to their different com- 
position. If this is true, and if we assume 

l k that the composition in the ordered phase is 
close to BaFe02.75, the composition in the 

l o arrowed domains must show a lower oxy- 
.h gen content, leading to a composition of 

BaFe02,T,,. These results seem to indicate 
that if the Fe4+ amount decreases, the A03 
packing changes from hexagonal to cubic, 
since the Goldschmidt factor decreases (9) 
due to the increase of the atomic radium of 
A4 cations. 

a In a previous study (7), the interpretation 
of the MGssbauer spectrum obtained for a 

B 
composition close to BaFe02,75 (7) led to 
the following ideal cationic distribution: -- / ---2ll~ -50% of high spin Fe4+ in [VI coordina- 
tion; 

-50% of Fe3+ in [VI] coordination; 
/ -No tetrahedral coordination was de- 

‘\ / 
v 

tected. 

b The ensemble of results obtained by elec- 
tron diffraction and microscopy and Miiss- 
bauer spectroscopy allow us to propose the 

FIG. 4. (a) Structural model of the 6H-type phase. following conclusions: 
(b) Schematic representation of the (ab) plane corre- 
sponding to the 6H structural type. -The phase without extended defects 

shows a chemical composition close to Ba 

ures Sa and 5b show the electron diffraction 
FeOz,-IS with 50% Fe4+ in [V] coordination 

patterns along [OlO],., and corresponding mi- 
and 50% Fe3+ in octahedral sites. 

crographs for BaFe02,75 and BaTiOj, re- 
-No differences are observed by elec- 

spectively . 
tron diffraction between BaFe02.T5 and Ba 

However, if the Fe4+ amount decreases, 
Ti03, suggesting that vacancies either are at 

some differences appear. Figure 6 shows 
random or are ordered in such a manner 

the structure image corresponding to Ba 
that a 6H-type cell is maintained. 

FeOz.,,, and [OlOlt,. It can be observed that 
BaFe02.75 is apparently ordered, while Ba 

In order to keep a 6H-type unit cell for 

FeOz.,,-, shows stacking faults along the ch 
the BaFe02.75 composition without the for- 

axis which are marked by an arrow. In 
mation of a superlattice due to oxygen va- 

these areas, it can be observed that crystal- 
cancies, two solutions can be imagined: 

lographic planes separated by 4 A intersect (1) The first solution has different oxygen 
at 45” the (OO1)h planes which can be attrib- compositions in adjacent layers: 



126 PARRAS ET AL. 

FIG. 5. (a) Electron micrograph and corresponding electron diffraction pattern of BaFe02 75 along 
the [OlO],, zone axis. (b) Same as (a) but for BaTiOj. 

FIG. 6. Electron microscopic image of BaFeO,,,, showing a disordered intergrowth of BaFe02 ,5 and 
a cubic phase. 
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FIG. 7. Schematic representation of an AOm layer 
showing: (a) anionic distribution at random, (b) order- 
ing of the oxygen vacancies. The resulting orthorhom- 
bit cell is outlined. 

h, A035x 

c, AOz.s+x 

c, A03-x 

h, A02.5+x 

c, A03-x 

c, A&.5+x 

h, A03-x. 

This leads to several solutions (0 I x 5 
0.23, assuming in every case that a disor- 
der of the vacancies in the (ab) plane oc- 
curs. The only restriction is that the partial 
ordering cannot result in the formation of 
tetrahedra. 

Among these possibilities, it is interest- 
ing to consider more carefully one particu- 
lar case. When x = 0, the anionic distribu- 
tion in the A03 layers is as follows: 

h, A03 

c, AO2.s 

c, A03 

h, AO2.5 

c, A03 

c, A02.5 

h, A03. 

In this case, we could suppose that oxy- 
gen vacancies are either distributed at ran- 
dom in the A02.s layers, as shown in r’ig. 
7a, or ordered, as schematized in Fig. 7b, 
inducing an orthorhombic superlattice in 
the (ab) hexagonal plane. This ordering 
leads to a unit cell with two parameters that 
are parallel to the h and c hexagonal axes 
and the third one, perpendicular to them, 
would follow the [210],, direction. 

If we represent schematically the pat- 
terns of Figs. 1 and 2, all the reflections can 
be indexed on the basis of an orthorhombic 
cell (Figs. Sa and b) in such a way that if we 
consider the extinctions shown in both fig- 
ures, no differences can be detected be- 
tween the patterns of this new phase and of 
that corresponding to the previous 6H-type 
cell. Besides, only reflections (Ml) when (h 
+ k) = 2n appear in the electron diffraction 
pattern corresponding to the [Ol l]r,//[O1 11, 
zone axis (Fig. 9a), which is schematized in 
Fig. 9b (subindex o refers to the orthorhom- 
bit cell). According to these extinctions, 
C222, Cmmm, and Cmm2 space groups are 
possible (10). 

From these results, it follows that the 
geometric relationship between the ortho- 
rhombic and hexagonal reciprocal cells (see 
Fig. 10a) is given by the expression 

And the corresponding relationship be- 
tween both direct cells (Fig. lob) is 

Then, the structural parameters are related 
by means of the expressions 
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FIG. 8. Schematic representation of the electron diffraction patterns shown in Figs. 1 and 2. Void 
dots correspond to systematic extinctions: (a) zone axis: [OlO]~/[OlO],. (b) Zone axis: [OOll~//[OOll,. 
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FIG. 9. (a) Electron diffraction pattern of BaFe02,75 along [Ol llh//[O1 I],. (b) Schematic representation 
of the above pattern showing the extinctions for the orthorhombic cell. 
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FIG. 10. {a) Schematic representation of the relationship between the orthorhombic and pseudocubic 
reciprocal lattices. (b) Same as (a) but for the direct cells. 

ii0 = 2i&+ bh; a,=fiah 

h, = i&; b, = bh (6) 

c, - &; c, = ch. 

(2) The second solution consists in con- 
sidering that all h planes (and, in the same 
way, all c planes) have the same composi- 
tion. In order to obtain a BaFe02.75 average 
composition following the stacking se- 
quence (hcc)2, it is necessary to solve the 
equation 

2A0, + AO, = A308.~j, (71 

where n and y are the oxygen compositions 
of the c and h layers, respectively. 

According to previous results (II), it can 

be assumed that the lower composition for 
a given layer is A02,5- Thus, the possible 
valuesforxandywillbeinthe2S~x,y~ 
3.0 range. 

Among several solutions, we emphasize 
the following anionic distribution which 
was previously proposed by Jacobson (11) 
from neutron diffraction results: 

h, AQ2.5 

c, Ah375 

CY A02.875 

h, AO2.s 

c, A%375 

c, A02.875 

h, AO2.s. 
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The oxygen vacancy distribution was inter- tence of square-pyramidal coordination for 
preted in terms of the formation of tetrahe- Mn3+ (17) has been proved, and ordered 
dra which were not observed in our sam- structures in the 0 s y I 0.5 range, even at 
ples by Mossbauer spectroscopy. y values close to 0, seem to exist (28). 

According to the composition and con- 
sidering the X-ray and electron diffraction, 
electron microscopy, and Mijssbauer spec- 
troscopy results, the anion vacancies 
(4.16%) should be distributed at random 
along the c layers. On the other hand, the 
concentration of oxygen vacancies in the h 
layers (16.6%) could lead to some type of 
ordering. However, since tetrahedra are 
not observed by Mossbauer spectroscopy, 
vacancies in the h layers must also be disor- 
dered in such a way that IV coordination is 
avoided. According to this distribution, su- 
perstructure reflections are not observed in 
electron diffraction patterns. 

Previous studies on nonstoichiometry in 
AMO+ perovskites have clearly shown 
that the vacancy ordering is a function of y. 
For instance, Komomicki et al. (12) hy- 
pothesized in perovskite-related ferrites 
that for values of y close to 0.15, oxygen 
vacancies were thought to be ordered along 
rows of various lengths in a statistical fash- 
ion, preserving the perovskite symmetry, 
these developing into vacancy rows of infi- 
nite length as y approach ca. 0.20. When y 
is ca. 0.25, the vacancy rows order into 
planes; and for still larger values of y the 
number of tetrahedral planes increases giv- 
ing rise, as seen by electron diffraction and 
high resolution electron microscopy, to ei- 
ther disordered intergrowths (23, 14) or 
new ordered phases (15, 16). 

In the BaFe03-y system, the accommo- 
dation of the nonstoichiometry follows a 
model different from that proposed by 
Komomicki et al. (12), and even for y 
values higher than 0.25, no superstructure 
reflections, indicative of some kind of or- 
dering with respect to the stoichiometric 
BaTi03 6H-type compound, are seen. 
Thus, although Fe4+ in [V] coordination is 
detected, the structural feature governing 
the anionic distribution seems to be the 
presence of coordination polyhedra-sharing 
faces, since in the materials formed by geo- 
metric environments sharing comers, the 
high resolution lattice image contrast is eas- 
ily used as a criterion to distinguish among 
the various possibilities of vacancy order- 
ing even at low y values. 

More studies on nonstoichiometric hex- 
agonal perovskites are necessary to hy- 
pothesize about the kind of vacancy order- 
ing as a function of y. 
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